iMQ

expenses resulting from such use.

HQS6003E/HQS6004E Brief Datasheet V1.4

Version: V1.4

HQS6003E/HQS6004E is a Low Power Secure Coprocessor. Its NIST Certified DRBG, Entropy Source and SHA Technologies can produce high quality entropy for secret key generation servers, HSMs, Linux & crypto applications. Package Type

Basic Information

- Operating Voltage: 2.0V ~ 5.5V
- Operating Temperature: -40°C ~ 85°C

• Communication

- HQS6003E supports standard I2C (Max: 1MHz)
- HQS6004E supports standard SPI (Max: 10MHz@MODE3)

Security Features

- NIST CAVP DRBG, SP800-90A Standard Certified
- NIST ESV(Entropy Source Validation) SP800-90B Standard Certified and CMVP FIPS 140-3 Complied
- NIST FIPS180-4 Standard Certified, SHA-256
- Active Tamper Detection and Reacts to Perturbation Attacks.
- Independent Internal Clock to Prevent Glitch Attack
- 128-bit Unique ID (UID)

Applications

- Financial transactions / POS (Point of Sales)
- Secure IPSEC / TLS / SSL / SSH protocols
- Networking / Smart Home
- AloT Device Security
- Cloud Computing
- Gaming and Lotteries
- Secret Key Generation
- Accessory Authentication
- End-to-End Encryption
- Scientific

Page : 2/27

iMQ reserves the right to change the information in this document without prior notice. Please contact iMQ to obtain the latest version of product specification before placing your order. Use of iMQ devices in life support is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless iMQ from any and all damages, claims, suits or expenses resulting from such use.

SOP8

8-Lead DFN (3mmx3mm)

iMQ Technology Inc.	
No. : TDDS02-H6004-EN(B) Name : HQS6003E/HQS6004E Brief Datasheet	Version : V1.4
1. PREFACE	4
2. PIN ASSIGNMEN I	5
 2.1 HQS6003E PIN Assignment/Description 2.2 HQS6004E PIN Assignment/Description 	5 6
3. ELECTRICAL CHARACTERISTICS	7
3.1 Absolute Maximum Rating	7
3.2 OPERATION CONDITIONS	8
3.2.1 Operation Conditions	8
3.2.2 I/O Characteristics	8
3.3 DC CHARACTERISTICS	8
3.4 Power-on Reset Characteristics	9
3.5 BROR CHARACTERISTICS	
3.6 AC CHARACTERISTICS	
3.6.1 AC Parameters	
3.6.2 IZC Characteristics	
3.6.3 SPI Characteristics	12
4. COMMAND INFORMATION	13
4.1 INITIAL SEQUENCE	13
4.2 BYTE AND BIT ORDERING	13
4.3 COMMAND SEQUENCE	14
4.4 COMMAND FORMAT	15
4.5 Response Format	
4.6 Response Status Codes	17
4.7 I2C FORMAT	
4.8 SPI FORMAT	20
APPENDIX A. PACKAGE INFORMATION	23
APPENDIX B. ORDERING INFORMATION	25
APPENDIX C. PRODUCT NUMBER INFORMATION	
REVISION HISTORY	27

Page : 3/27

1. Preface

The Random Number Generator is essential for system security and especially for providing the randomness and robustness of the keys for the cryptography. HQS600xE provides highest quality random numbers through TRNG, DRBG and SHA-256. Its Entropy Source is NIST ESV (SP800-90B) certified, the DRBG (SP800-90A) and SHA-256 are NIST CAVP certified.

HQS600xE is suitable for building highest level-security applications, such as IoT, Mobile Phone, Laptop, Tablet, SmartHome, SmartCity, Server, NAS, Gaming, etc.

IMO Certifications

Page : 4/27

No. : TDDS02-H6004-EN(B) Name : HQS6003E/HQS6004E Brief Datasheet

Version: V1.4

2. Pin Assignment

2.1 HQS6003E Pin Assignment/Description

PRODUCT: HQS6003ESP008C00R:

PRODUCT: HQS6003EN3008C00R

Figure 2-2 Pin Assignment of HQS6003E 8-Lead DFN

Pin No.	Pin Name	I/О Туре	Description
1	NC	-	No Connect
2	NC	-	No Connect
3	NC	-	No Connect
4	VSS	GND	Ground
5	SDA	I/O	I2C Serial Data
6	SCL	Ι	I2C Serial Clock Input
7	NC	-	No Connect
8	VDD	Power	VDD power Supply

Page : 5/27

Page : 6/27

3. Electrical Characteristics

3.1 Absolute Maximum Rating

The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

(Vss=0V)

Parameter	Symbol	Pins	Ratings	Unit
Supply Voltage	V_{DD}		-0.3 to 6.0	V
Input Voltage	V _{IN}	All I/O pins	-0.3 to VDD+0.3	V
Output Current(Total)	I _{OL}	All I/O pins	100	mA
Storage Temperature	T _{STG}		-50 to 125	°C

Page : 7 / 27

3.2 Operation Conditions

The following defines the electrical characteristics of the device when it is operated at voltage and temperature maximum/minimum values. Unless otherwise stated, the standard conditions were determined at "operating temperature 25° C and operating voltage VDD = 3.3 V".

3.2.1 Operation Conditions

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply Voltage	V _{DD}		2.0	3.3	5.5	v
Operating	Ta		40	75	OF	Ŷ
Temperature	Id		-40	25	65	C

3.2.2 I/O Characteristics

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input Low Voltage	VIL	VDD=5V, temperature=25°C	0		0.3 VDD	V
Input High Voltage	VIH	VDD=5V, temperature=25°C	0.7 VDD		VDD	V
Output Low Voltage V _{OL}		VDD=5V, temperature=25°C IOL= 3 mA	0		0.1 VDD	V
Output High Voltage	V _{OH}	VDD=5V, temperature=25°C IOH= -3 mA	0.9VDD		VDD	V

3.3 DC Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply Current in Operation Mode (Waiting for Command)	IDD_N1		3.7		mA
Supply Current in Operation Mode (During Command Execution)	IDD_N2		4.3		mA
Supply Current in Sleep Mode	IDD_DS	-	0.3	-	uA

Page : 8/27

Version: V1.4

3.4 Power-on Reset Characteristics

Ta=-40~85°C					
Symbol	Description	Min.	Тур.	Max.	Unit
tPPW	Power-on reset minimum pulse width	1	-	-	ms
tPWUP	Warming-up time after a reset is clear and device ready	-	4	-	ms
tVDD	Power supply rise time	0.5	-	5	ms

Figure 3-1 Operation Timing of Power-on Reset

Note : In power-down process, the VDD must be 0 V, then re-power-on to ensure the IC operating normal.

Page : 9/27

Version : V1.4

3.5 BROR Characteristics

Ta=-40~85°C

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
BROR detected voltage	VBROR_Falling	VDD fall time > tVDD (tVDD please refer to <u>Power-on</u> <u>Reset Characteristics</u>)	1.85	1.90	1.95	v

3.6 AC Characteristics

3.6.1 AC Parameters

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power-Up Delay	T_{PU_RDY}	-	1200	1500	us
Standby Time, Entering the deep sleep mode	Т _{stb}	-	55	90	us
Wake-Up Ready Time, deep sleep mode	TW _{DS_RDY}	-	300	-	us

Note: The "Typ." value is based on 25°C room temperature, and the Sleep command will change this value.

Page : 10/27

iMQ Technology Inc. No. : TDDS02-H6004-EN(B) Name : HQS6003E/HQS6004E Brief Datasheet

Version: V1.4

3.6.2 I2C Characteristics

Figure 3-2 I2C Timing Sequence

Parameter	Symbol	Min.	Max.	Unit
Clock Frequency	f _{SCL}		1	MHz
Hold Time Repeated START Condition	t _{hd;sta}	0.45	-	us
Low Period of SCL Clock	t _{LOW}	0.65	-	us
High Period of SCL Clock	thigh	0.35	-	us
Setup Time for a Repeated START Condition	t _{su;sta}	0.35	-	us
Data Hold Time	thd;dat	-	0.5	us
Data Setup Time	t _{su;dat}	0.1	-	us
Rise Time of Both SDA and SCL	tr	20	300	ns
Fall Time of both SDA and SCL	t _f	20	300	ns
Setup Time of STOP Condition	t _{su;sto}	0.6	-	us
Bus Free Time Between a STOP and START Condition	t _{BUF}	1.3	-	us
Capacitive Load for Each Bus Line	C _b	-	400	pF

Page: 11/27

Version: V1.4

3.6.3 SPI Characteristics

Mode 3

Figure 3-3 SPI mode 3 Timing Sequence

Parameter	Symbol	Min.	Max.	Unit
SPI Frequency		-		
(VDD=2.7V~5.5V)	fSPI		10	MHz
(VDD=2.0V~2.7V)			5	MHz
SPI Period	tSPI	1/fSPI	-	ns
High period of the SCLK pin	tCLKH	0.4 tSPI	-	ns
Low period of the SCLK pin	tCLKL	0.4 tSPI	-	ns
From SPICS active to first sample edge	tCS_SU	50	-	ns
From last SCLK shift edge to SPICS inactive	tCS_HD	50	-	ns
Time between SPI transaction	tCS_WA	3 tSPI	-	ns
Data Input Setup Time	tSI_SU	5	-	ns
Data Input Hold time	tSI_HD	5	-	ns
Data Output Valid Time	tSO_VD	-	20	ns
Data Output Disable Time	tSO_DIS	-	20	ns

Page : 12/27

No. : TDDS02-H6004-EN(B) Name : HQS6003E/HQS6004E Brief Datasheet

4. Command Information

This section provides information on command, response format, and response status codes used in this device. The following terms are used in this document.

Table 4-1 Document Termsw

Term	Meaning		
Var.bit	Use to specify one bit in a variable. For example, MODE.2, refers to bit 2 of MODE.		
Var.a:b	Use to specify multiple bits in a variable. For example, MODE.2:0 refers to bits 2:0 of		
	MODE.		
MVar[a:b]	For a multiple byte variable, this notation specifies multiple bytes of the variable. For		
	example DIN[5:0], refers to Byte 0 to Byte 5 of DIN.		

4.1 Initial Sequence

After any reset or wake from sleep mode, Host should sent RDSR command to device until device return 'READY'. Next, host should send the Info – Error Status to enquire if any error has been detected. Failure condition such as Self Test failure will restrict the device to respond to a limited set of commands.

After any reset, host shall send SelfTest command to ensure that Random Number Generator is operated properly before issuing the Random Command.

4.2 Byte and Bit Ordering

All multi-byte elements are treated as arrays of bytes and are processed in the order received or transmitted with most significant byte first. Within a byte, the most significant bit is transmitted first.

In this document, the most-significant byte appears towards the left hand side of the page.

Page : 13/27

iMQ Technology Inc. No. : TDDS02-H6004-EN(B) Name : HQS6003E/HQS6004E Brief Datasheet Version: V1.4 4.3 Command Sequence Host communicated with the device via the following supported communication interface: I2C (HQ\$6003E) SPI (HQS6004E) This device supports communication in the form of Command and Response. A typical command sequence is as follow MASTER COMMAND MASTER_WAIT **SLAVE** MASTER MASTER RDSR SLAVE RSP

Master is an external host while slave is HQS6003E/HQS6004E.

Master issues a command (MASTER_COMMAND) to Slave

Master waits for Slave to execute the command (MASTER_WAIT)

Master issues a Read Status command (MASTER_RDSR)

Slave sends a Slave Response (SLAVE_RSP)

All the commands follow the above protocol. RESET and RDSR are special cases and are described in details in the later sessions.

For data integrity, all commands and responses are appended with a CRC16 checksum with initial value set to 0xFFFF. The CRC is computed over the entire packets starting from the first byte to the byte before the CRC Checksum.

The polynomial use is CRC-16: $X^{16} + X^{12} + X^{5} + 1$ (0x1021)

The first CRC byte transmitted (N-1) is the Most Significant Byte of the CRC value, so the last byte of the group is the Least Significant Byte of the CRC.

Page: 14/27

No. : TDDS02-H6004-EN(B) Name : HQS6003E/HQS6004E Brief Datasheet

4.4 Command Format

Regardless of the interface selected, all commands and responses are constructed in manner described in this session.

Command Packet:

LEN COMMAND MODE PARAM DIN (Optional)	CRC16
--	-------

Table 4-2 Command Format

Size (Byte)	Name	Description
1		Number of bytes in the command including LEN byte.
I	LEIN	Minimum value is 7, up to supported by the individual command.
1	COMMAND	Command Code
1	MODE	Mode
2	PARAM	Parameters
LEN - 7	DIN	Data Input (Optional) depending on command
2		CRC16 Checksum. Computed over the entire command
Z		sequence from LEN to DIN.

If any of the command field values differs from the command definition or LEN value does not match the command length received, then the device may response with either an error indication or some input bytes may be silently ignored. Any values not currently defined in the command are reserved for future use. Application should not use them in their system.

After a complete error-free command is received, the device status is changed to BUSY and command execution starts. Only RDSR status command is accepted while device is BUSY. All other command will be ignored. Command execution result is available after the status is changed from BUSY to Success.

Page: 15/27

4.5 Response Format

The command response is retrieved by the Read Status Command (RDSR). The device response is divided into two response packets. The first packet (Response Length) returns the length of command result output while the second packet (Response Data) return command result. Please refer to each command for the response data information.

CRC and LEN errors indicate a communication interface issue. Command may be resent to the device. All the other errors should be resolved first before resending command to the device. If multiple error occurs, only one of them will be reported. In the case of an error condition, no Response Data response will be returned.

Size (Byte)	Name	Description
1		Number of bytes in Response Length from LEN to CRC16. This
	LEIN	Response packet has a fixed length of 5.
		Status.
1	STATUS	0x00 if command execute successfully.
		An error status code if command fails.
	RSP LEN	Response Length. For command with no output data, this field has
1		a value of 0x00. For command with output data, this field contains
		the total length of the Response Data Packet.
2		CRC16 Checksum. Computed over the entire command sequence
Z	CKC10	from LEN to RSP LEN.

Table 4-3 Response Length Format

Table 4-4 Response Data Format

Size (Byte)	Name	Description
1		Number of bytes in Response Data from RSP LEN to CRC16. This field
	KSP_LEIN	has the same value as RSP LEN in the Response Length above.
RSP_LEN - 3	DOUT	Data Output depending on command
2		CRC16 Checksum. Computed over the entire command sequence from
	CKC16	LEN to DOUT.

Page: 16/27

No. : TDDS02-H6004-EN(B) Name : HQS6003E/HQS6004E Brief Datasheet

4.6 Response Status Codes

The device status is listed in Table 4-5 Device Status. The device is ready to receive a new command if it is not BUSY.

Table 4-5 Device Status

Status	State Description	Description
Code	State Description	Description
0x00	Successful Command	Command executed successfully.
	Execution	
0x01	READY	The device is now idle and is ready for a new command.
0x03	CRC or Other	Communication Error. Invalid command CRC16 value or invalid
Communications Error		length (LEN < 7). The command is ignored.
	Invalid Command/Parse	Command was properly received. However, command fields are
0x04	Error	invalid. Correction of the command fields must be made before
		command is resent.
		Failure condition occurs. This will restrict the device to respond to
0x07	Failure Error	a limited set of commands. Use Info – Error Status to retrieve the
		error source.
		Command was properly received but could not be executed by the
0x0F	Execution error	device in its current state. Changes in the device state or the
		command field values must be made before command is resent.
0x7E		Device Busy. Device is not ready to receive any command.
0x7F	16091	Device is either executing a command or during initialization.

Page : 17/27

4.7 I2C Format

The I2C supports the following features:

- Slave Only
- 7-bit address
- Up to 1MHz

The I2C adds Start(S), Slave Address (ADDR) R/W and Stop (P) condition to the basic protocol format. I2C address default value is 0xC8.

The command packet is terminated by a STOP condition.

In between the two response packets, a STOP condition must be sent.

I2C Command Format

s	ADDR W	LEN	COMMAND	MODE	PARAM	DIN (Optional)	CRC16	Р
RD	SR Command	Format:						
s	ADDR W	LEN 0x07	RDSR 0xF0	MODE	PARAM	CRC16	Р	

Response Format

S	ADDR R	LEN 0x05	STATUS	RSP LEN	CRC16	Ρ
S	ADDR R	RSP LEN	R	SP	CRC16	Р

Response Format – Ready:

c	ADDR	LEN	READY	RSP LEN	CDC16	D
3	R	0x05	0x01	0x00	CKC10	٢

Response Format – Success:

s	ADDR R	LEN 0x05	SUCCESS 0x00	RSP LEN	CRC16	Ρ
s	ADDR R	RSP LEN	R	SP	CRC16	Ρ

Page : 18/27

onse Form ADDR R	nat – Busy: LEN 0x05				
ADDR R	LEN 0x05				
		BUSY 0x7F	RSP LEN 0x00	CRC16 P	
onse Form	nat –Commu	inication Error:			
ADDR R	LEN 0x05	COMERR 0x03	RSP LEN 0x00	CRC16 P	
	R	R 0x05	R 0x05 0x03	R 0x05 0x03 0x00	R 0x05 0x03 0x00 CRC16 P

Page : 19/27

iМQ	Techno	loav	Inc.
	1 CCI II IO	iogy.	mic.

4.8 SPI Format

This device uses the SPI serial interface for communication. The SPI supports the following features:

- Slave Only
- Mode 3
- Up to10MHz

SPI supports Slave mode only. The SPI interface is composed of four signals:

SCLK	SPI CLK :	SPI clock output driven by master and input to the slave.
MOSI	Master Out Slave In :	A unidirectional output driven by master and input to the slave.
MISO	Master In Slave Out:	A unidirectional input to the master and output driven by slave.
CS	Chip Select :	The SPI Chip Select is an output driver by master and input to the
		slave.

An SPI transaction starts when the master asserts the slave chip select and ends when the slave chip select is deasserted. After CS is asserted, if available, output data is shifted out by the first shift edge. Data is shifted out by the output device on the shift edge and sampled by the recipient at the sample edge.

SPI Command Format

SPI Read Status Command and Response Format

Page : 20/27

Appendix A. Package Information

SOP8

Symbol	mm				
Symbol	Min.	Тур.	Max.		
А			1.75		
A1	0.10 –		0.25		
A2	1.25		-		
b	0.31	-	0.51		
с	0.10	0.25			
D	4.90 BSC				
E	6.00 BSC				
E1	3.90 BSC				
e	1.27 BSC				
L	0.40	-	1.27		
h	0.25		0.50		
θ	0 °	- 8°			

Page : 23/27

Page : 24/27

Version : V1.4

Appendix B. Ordering Information

When ordering products, please provide the following details:

Ordering Information	Product	Packing	Description	
Example	HQS6003ESP008C00R	Т	I2C, SOP8, Tape & Reel, 85°C, A5	
	HQ\$6003EN3008C00R	Т	I2C, DFN 3x3, Tape & Reel, 85°C, A5	
	HQS6004ESP008S00R	Т	SPI, SOP8, Tape & Reel, 85°C, A5	
	HQ\$6004EN3008\$00R	Т	SPI, DFN 3x3, Tape & Reel, 85°C, A5	
	HQS6003ESP008C01R	Т	I2C, SOP8, Tape & Reel, 85°C, A5.1	
	HQ\$6003EN3008C01R	Т	I2C, DFN 3x3, Tape & Reel, 85°C, A5.1	
	HQS6004ESP008S01R	Т	SPI, SOP8, Tape & Reel, 85°C, A5.1	
	HQ\$6004EN3008\$01R	Т	SPI, DFN 3x3, Tape & Reel, 85°C, A.5.1	

Note 1: "Packing"- T: Tape & Reel; B: Tube/Tray

Page : 25/27

: TDDS02-ł	H6004-EN(B)	Name : F	IQS6003E/H	IQS600	4E Brie	f Data	asheet			Version : V1.4
Append	dix C. Pro	oduct Ni	ımber İn	form	atior	ו				
, ppene					cicioi	•				
Example :			HOS	<u>60</u>	<u>04E</u>	<u>SP</u>	<u>008</u>	<u>S</u>	<u>01</u>	<u>R T</u>
iMQ HQS pro	duct ———									
Product Series	;									
Sub Series										
Package Type										
Code Pac	kage Type									
SP N3 E	SOP DFN 3x3									
Pin Count –										
Code	Pin									
008	8									
Communicatio	on Interface -									
Code	Туре.									
C	I2C									
S W	SWI									
	_									
Designator										
Code	Version									
00	A5									
01	A5.1									
Operating Ter	np ———									
Code O	perating Temp.									
R	-40~85°C									
Packing –]
Code	Packing									
Т	T&R									
В	Tube									
		-								

Page : 26/27

No. : TDDS02-H6004-EN(B) Name : HQS6003E/HQS6004E Brief Datasheet

Revision History

Version	Approved Date	Description
V1.4	2025/02/24	1. Add "Preface" Section
V1.3	2025/02/20	 Modify Security Features "NIST CAVP Certified DRBG Technology" to "NIST CAVP DRBG, SP800-90A Standard Certified" Modify Security Features "NIST SP800 -90A/B/C compliant test" to "NIST ESV(Entropy Source Validation) SP800-90B Standard Certified and CMVP FIPS 140-3 Complied" Remove Security Features "NIST SP800-22 test suite compliance" Modify Security Features "NIST 180-4 SHA-256" to "NIST "FIPS 180-4 Standard Certified, SHA-256"
V1.2	2025/02/04	 Add Packing (T) in Appendix C. Product Number Information Add "Designator" example description in Appendix B. Ordering Information Correct typo "Packaging" to "Packing" in Appendix B. Ordering Information
V1.1	2024/12/24	1. Sync with full version datasheet
V1.0	2024/12/6	1. Initial release based on HQS6003E/HQS6004E Datasheet, TDDS02- H6004-EN

Page : 27 / 27